Sains Malaysiana 53(6)(2024): 1363-1375
http://doi.org/10.17576/jsm-2024-5306-11
Aktiviti Antibakteria Lactiplantibacillus sp. SUK1-Sumber Susu Manusia dan Produk Bakteriosin SeparaTulen terhadap Porphyromonas gingivalis
(Antibacterial Activity
of Lactiplantibacillus sp. SUK1-derived Human Milk and its Semi-pure Bacteriocin Product against Porphyromonas gingivalis)
ZALEHA SHAFIEI1, NORAZIAH
MOHAMAD ZIN2,*, NUR DINI MUHAMAD
ADLI2, FATIN NUR MAZIDA SALWA MAZLAN2, MOHD NIZAM LANI3 & ZAMIRAH ZAINAL ABIDIN1
1Jabatan Diagnostik Kraniofasial dan Biosains, Fakulti Pergigian, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
2Pusat Kajian Diagnostik, Teraputik & Penyiasatan, Fakulti Sains Kesihatan, Universiti Kebangsaan Malaysia
50300 Kuala Lumpur, Malaysia
3Fakulti Perikanan dan Sains Makanan,Universiti Malaysia Terengganu, 21030 Kuala Nerus Terengganu Malaysia
Received: 31 October 2023/Accepted: 16 May 2024
Abstrak
Penemuan probiotik daripada susu badan manusia dapat memberi manfaat dalam mengurangkan kebolehjangkitan P. gingivalis. Kajian ini dijalankan untuk mengenal pasti potensi Lactiplantibacillus spp. yang dipencil daripada susu badan manusia untuk mengurangkan kebolehjangkitan P. gingivalis seterusnya mencirikan Lactiplantibacillus sp. yang paling berpotensi mempunyai aktiviti antibakteria. Sepuluh koloni spesies Lactiplantibacillus dengan ciri Gram-positif berbentuk bacillus, katalase negatif dan oksidase negatif dikenal pasti, namun hanya tiga koloni telah dipilih yang dikenali sebagai Lactiplantibacillus sp. SUK1, SUK2, SUK3 dan diuji aktiviti antibakteria terhadap P. gingivalis. Larutan kultur sel Lactiplantibacillus sp. SUK1 menunjukkan aktiviti perencatan yang kuat pada ujian Spot Lawn (29.33 ± 1.16 mm) dan difusi telaga agar (51.33 ± 4.73 mm), tetapi tiada aktiviti dalam ujian difusi telaga agar yang menggunakan supernatan tanpa sel yang dineutralkan dan yang tidak dineutralkan. Walau bagaimanapun, supernatan tanpa sel yang dipekatkan menunjukkan zon perencatan (13.0 ± 0.07 mm). Bakteriosin separa tulennya yang diektrak daripada pemendakan ammnonia sulfat (80%) telah merencat P. gingivalis secara berkesan, dengan pertumbuhan terendah sebanyak 40.3% pada kepekatan bakteriosin 0.8%. Analisis penjujukan 16S rRNA mencirikan Lactiplantibacillus sp. SUK1 sebagai Lactiplantibacillus pentosus strain 124-2 dengan 99.87% persamaan. Lactiplantibacillus sp. SUK1 yang dipencil daripada susu badan manusia mempunyai ciri probiotik dengan merencat pertumbuhan P. gingivalis dan bakteriosinnya dapat digunakan sebagai bahan alternatif dalam produk penjagaan kebersihan mulut bagi mencegah dan merawat penyakit periodontium.
Kata kunci: Antibakteria, bakteriosin separa tulen; Lactiplantibacillus sp. SUK1; penjujukan
16S rRNA; Porphyromonas
gingivalis
Abstract
The discovery of probiotics from human milk could be beneficial to prevent chronic periodontitis by controlling P. gingivalis infection. This study was conducted to identify the potential of Lactiplantibacillus spp. isolated from human milk with antibacterial activities in reducing the infectivity of P. gingivalis and followed by the characterisation of the most potent Lactiplantibacillus sp. Ten colonies of Lactiplantibacillus species with characteristics of Gram-positive bacteria in the form of bacillus, catalase-negative and oxidase-negative were identified, however, only three colonies were selected and designated as Lactiplantibacillus sp. SUK1, SUK2, SUK3, and tested the antibacterial activity against P. gingivalis. Lactiplantibacillus sp. SUK1 cells culture suspension showed strong inhibitory activity in the Spot Lawn test (29.33 ± 1.16 mm) and agar well diffusion assay (51.33 ± 4.73 mm), but no activity in agar well diffusion assay using neutralised and non-neutralised cell-free supernatants. However, the concentrated cell-free supernatant exhibited the zone of inhibition (13.0 ± 0.07 mm). The partially purified bacteriocin extracted from ammonium sulphate precipitation (80%) effectively inhibited P. gingivalis, with the lowest growth of 40.3% at 0.8% concentration of the bacteriocin. The 16S rRNA sequencing analysis characterised the Lactiplantibacillus sp. SUK1 as Lactiplantibacillus pentosus strain 124-2 with a 99.87% similarity. In conclusion, Lactiplantibacillus sp. SUK1 isolated from human milk has probiotic properties inhibiting P. gingivalis growth and its bacteriocin could be used as an alternative material for oral hygiene care products to prevent and treat periodontal disease.
Keywords: Antibacteria; Lactiplantibacillus sp. SUK1; partial purified bacteriocin; Porphyromonas gingivalis; 16S rRNA sequencing
REFERENCES
Ahn, K.B., Baik, J.E.,
Park, O.J., Yun, C.H. & Han, S.H. 2018. Lactobacillus
plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans. PLoS ONE 13: e0192694.
Balagopal, S. &
Arjunkumar, R. 2013. Chlorhexidine: The gold standard antiplaque agent. Journal of Pharmaceutical Sciences and Research 5(12): 270-274.
Ballard, O. &
Morrow, A.L. 2013. Human milk composition. nutrients and bioactive factors. Pediatric Clinics of North America 60(1): 49-74.
Bengtsson, T., Zhang,
B., Selegard, R., Wiman, E., Aili, D. & Khalaf, H. 2017. Dual action of
bacteriocin PLNC8 αβ through inhibition of P. gingivalis infection and promotion of cell proliferation. Pathogens and Disease 75: ftx064.
Borzenkov, V.,
Surovtsev, V. & Dyatlov, I. 2014. Obtaining bacteriocins by chromatographic
methods. Advances in Bioscience and
Biotechnology 05(05): 446-451.
Bostanci, N. &
Belibasakis, G.N. 2012. Porphyromonas
gingivalis: An invasive and evasive opportunistic oral pathogen. FEMS Microbiology Letters 333(1): 1-9.
Burgess, R.R. &
Deutscher, M. 2009. Protein Precipitation Techniques. Methods in Enzymology: Guide to
Protein Purification. 2nd ed. USA: Elsevier.
Burianek, L.L. &
Yousef, A.E. 2000. Solvent extraction of bacteriocins from liquid cultures. Letters in Applied Microbiology 31:
193-197.
Chen, L.J., Tsai, H.T.,
Chen, W.J., Hsieh, C.Y., Wang, P.C., Chen, C.S., Wang, L. & Yang, C.C.
2012. In vitro antagonistic growth effects
of Lactobacillus fermentum and Lactobacillus salivarius and their
fermentative broth on periodontal pathogens. Brazilian Journal of Microbiology 43(4): 1376-1384.
CLSI. 2012. Methods for Dilution Antimicrobial
Susceptibility Tests for Bacteria that Grows Aerobically. Approved Standard, 9th ed. CLSI
Document MO7- A9, USA.
Gaspar, C., Donders, G.,
Palmeira-De-Oliveira, R., Queiroz, J., Tomaz, C., Martinez-De-Oliveira, J.
& Palmeira-De-Oliveira, A. 2018. Bacteriocin production of the probiotic Lactobacillus acidophilus KS400. AMB Express 8(1): 1-8.
Goh, H.F. & Philip,
K. 2015. Purification and characterization of bacteriocin produced by Weissella
confusa A3 of dairy origin. PLoS ONE10(10):
e0140434.
Gönczi, N.N., Strang,
O., Bagi, Z., Rákhely, G. & Kovács, K. 2021. Interactions between probiotic
and oral pathogenic strains. Biologia
Futura 72(4): 461-471.
Grazia, S.E., Sumayyah,
S., Haiti, F.S., Sahlan, M., Heng, N.C.K. & Malik, A. 2017.
Bacteriocin-like inhibitory substance (BLIS) activity of Streptococcus macedonicus MBF10-2 and its synergistic action in
combination with antibiotics. Asian
Pacific Journal of Tropical Medicine 10(12): 1140-1145.
Heilbronner, S.,
Krismer, B., Brötz-Oesterhelt, H. &
Peschel, A. 2021. The microbiome-shaping roles of bacteriocins. Nature Review of Microbiology 19(11):
726-739.
Huang, C.H., Li, S.W.,
Huang, L. & Watanabe, K. 2018. Identification and classification for the Lactobacillus casei group. Frontiers in Microbiology 9(1974): 1-13.
Jamalifar, H., Rahimi,
H., Samadi, N., Shahverdi, A., Sharifian, Z. & Hosseini F. 2011.
Antimicrobial activity of different Lactobacillus species against multi-drug resistant clinical isolates of Pseudomonas aeruginosa. Iran
Journal of Microbiology 3(1): 21-25.
Kang, M.S., Lim, H.S.,
Oh, J.S., Lim, Y.J., Wuertz-Kozak, K. & Harro, J.M. 2017. Antimicrobial
activity of Lactobacillus salivarius and Lactobacillus fermentum against Staphylococcus aureus. Pathogens and Disease 75(2): 1-13.
Kõll-Klais, P., Mändar,
R. & Leibur, E. 2005. Oral Lactobacilli in chronic periodontitis and
periodontal health: Species composition and antimicrobial activity. Oral Microbiology and Immunology 20:
354-361.
Kumar, V., Sheoran, P.,
Gupta, A., Yadav, J.P. & Tiwari, S. 2016. Antibacterial property of
bacteriocin produced by Lactobacillus
plantarum LD4 isolated from a fermented food. Annals of Microbiology 66: 1431-1440.
Lopetuso, L.R., Giorgio, M.E., Saviano, A., Scaldaferri, F., Gasbarrini, A. &
Cammarota, G. 2019. Bacteriocins and bacteriophages: Therapeutic weapons for
gastrointestinal diseases? International
Journal of Molecular Sciences 20(1): 183.
Martín, R., Langa, S.,
Reviriego, C., Jiménez, E., Marín, M.L., Xaus, J., Fernández, L. &
Rodríguez, J.M. 2003. Human milk is a source of lactic acid bacteria for the
infant gut. Journal of Pediatrics 143(6): 754-758.
McFarland, L.V. 2015.
Probiotics for the primary and secondary prevention of C. difficile infections: A meta-analysis and systematic review. Antibiotics 4(2): 160-178.
Messaoudi, S., Manai,
M., Kergourlay, G., Prévost, H., Connil, N., Chobert, J.M. & Dousset, X.
2013. Lactobacillus salivarius:
Bacteriocin and probiotic activity. Food
Microbiology 36(2): 296-304.
Mirnejad, R., Vahdati,
A.R., Rashidiani, J., Erfani, M. & Piranfar, V. 2013. The antimicrobial
effect of Lactobacillus casei culture supernatant against
multiple drug-resistant clinical isolates of Shigella sonnei and Shigella
flexneri in vitro. Iran Red Crescent Medical Journal 15(2):
122-126.
Murphy, K., Curley,
D.T., O’Callaghan, T.F., O’Shea, C.A., Dempsey, E.M., O’Toole, P.W., Ross,
R.P., Ryan, C.A. & Stanton, C. 2017. The composition of human milk and
infant faecal microbiota over the first three months of life: A pilot study. Scientific Reports 7: 1-10.
Ołdak, A.,
Zielińska, D., Rzepkowska, A. & Kołozyn-Krajewska, D. 2017.
Comparison of antibacterial activity of Lactobacillus
plantarum strains isolated from two different kinds of regional cheeses
from Poland: Oscypek and Korycinski cheese. BioMed
Research International 2017: 6820369.
Parte, A.C., Sardà Carbasse, J.,
Meier-Kolthoff, J., Reimer, L.C. & Göker,
M. 2020. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves
to the DSMZ. International Journal of
Systematic and Evolutionary Microbiology 70: 5607-5612.
Plaza-Diaz, J.,
Ruiz-Ojeda, F.J., Gil-Campos, M. & Gil, A. 2019. Mechanisms of action of
probiotics. Advances in Nutrition 10(1): S49-S66.
Rahimifard, N., Moghni, M. & Naseri, M. 2016. Evaluation and
comparison of three antimicrobial activity methods using Bifidobacteria bifidum and Bifidobacteria
infantis as probiotic bacteria against Salmonella
enterica serotype Enteritidis. Journal
of Bacteriology and Mycology 2(3): 61-64.
Shafiei, Z., Rahim,
Z.H.A., Philip, K., Thurairajah, N. & Yaacob, H. 2020. Potential effects of Psidium sp., Mangifera sp., Mentha sp.
and its mixture (PEM) in reducing bacterial populations in biofilms, adherence
and acid production of S. sanguinis and S. mutans. Archives of Oral Biology 109: 104554.
Shokryazdan, P., Sieo,
C.C., Kalavathy, R., Liang, J.B., Alitheen, N.B., Faseleh Jahromi, M. & Ho,
Y.W. 2014. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed Research International 2014:
927268.
Siegrist, J. 2018.
Streptococci - Overview
of detection, identification, differentiation and cultivation techniques. AnalytiX 7: 3.
Simons, A., Alhanout, K.
& Duval, R.E. 2020. Bacteriocins, antimicrobial peptides from bacterial
origin: Overview
of their biology and their impact against multidrug-resistant bacteria. Microorganisms 8(5): 639.
Tharmaraj, N. &
Shah, N.P. 2009. Antimicrobial effects of probiotics against selected
pathogenic and spoilage bacteria in cheese-based dips. International Food Research Journal 16(1): 261-276.
Tsou, S.H., Hu, S.W.,
Yang, J.J., Yan, M. & Lin, Y.Y. 2019. Potential oral
health care agent from coffee against virulence factor of periodontitis. Nutrients 11(9): 2222-2235.
Tiwari, S.K. &
Srivastava, S. 2008. Purification and characterization of Plantaricin LR14: A
novel bacteriocin produced by Lactobacillus plantarum LR/14. Applied Microbiology and
Biotechnology 79(5): 759-767.
Wasfi, R., Abd
El‐Rahman, O.A., Zafer, M.M. & Ashour, H.M. 2018. Probiotic Lactobacillus sp. inhibit growth,
biofilm formation and gene expression of caries‐inducing Streptococcus mutans. Journal of Cellular Molecular Medicine 22(3): 1972-1983.
World Health Organization (WHO). 2014. Antimicrobial Resistance: Global Report on
Surveillance.
Switzerland: WHO Press.
Yuliana, T., Pratiwi,
A.R., Zahratunnisa, S., Rialita, T., Cahyana, Y., Harlina, P.W. & Marta, H.
2023. Purification and partial characterization of a bacteriocin produced by Lactobacillus pentosus 124-2 isolated
from dadih. Applied Sciences (Switzerland) 13(7): 1-11.
Zangeneh, M., Khorrami,
S. & Khaleghi, M. 2020. Bacteriostatic activity and partial
characterization of the bacteriocin produced by L. plantarum sp. isolated from traditional sourdough. Food Science Nutrition 8(11): 6023-6030.
Zhang, Y., Ding, Y.
& Guo, Q. 2022. Probiotic species in the management of periodontal
diseases: An overview. Frontiers in
Cellular and Infection Microbiology 12: 1-15.
Zheng, J., Wittouck, S., Salvetti, E., Franz, C.M.A.P., Harris,
H.M.B., Mattarelli, P., O’toole, P.W., Pot, B., Vandamme, P., Walter, J.,
Watanabe, K., Wuyts, S., Felis, G.E., Gänzle, M.G. & Lebeer, S. 2020. A
taxonomic note on the genus Lactobacillus:
Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and
Leuconostocaceae. International Journal
of Systematic and Evolutionary Microbiology 70(4): 2782-2858.
*Corresponding author; email:
noraziah.zin@ukm.edu.my
|